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a b s t r a c t

The design of a new, truly robust multigrid framework for the solution of steady-state Rey-
nolds-Averaged Navier–Stokes (RANS) equations with two-equation turbulence models is
presented. While the mean-flow equations and the turbulence model equations are
advanced in time in a loosely-coupled manner, their multigrid cycling is strongly coupled
(FC-MG). Thanks to the loosely-coupled approach, the unconditionally positive-convergent
implicit time-integration scheme for two-equation turbulence models (UPC) is used. An
improvement to the basic UPC scheme convergence characteristics is developed and its
extension within the multigrid method is proposed. The resulting novel FC-MG-UPC algo-
rithm is nearly free of artificial stabilizing techniques, leading to increased multigrid effi-
ciency. To demonstrate the robustness of the proposed algorithm, it is applied to linear
and non-linear two-equation turbulence models. Numerical experiments are conducted,
simulating separated flow about the NACA4412 airfoil, transonic flow about the
RAE2822 airfoil and internal flow through a plane asymmetric diffuser. Results obtained
from numerical simulations demonstrate the strong consistency and case-independence
of the method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Turbulent flow simulations employing the Reynolds-Averaged Navier–Stokes (RANS) equations are widely used in re-
search, development, and design processes. Among the RANS turbulence models, the two-equation k-x [1] and k-� [2] clo-
sure models are most widely used since they are considered well-balanced in terms of computational requirements and
physical rationale. Two-equation RANS turbulence models are based on transport equations for turbulence quantities
(e.g., turbulence kinetic energy), which are positive because of the underlying physics. The equations consist of convective,
diffusive, and source-term operators.

Despite their relatively simple mathematical representation, two-equation turbulence models present serious numerical
difficulties, including convergence and positivity–preservation difficulties. The common argument is that the convergence
difficulties arise mainly due to the strongly non-linear source term, having time scales that greatly differ from those of
the convective and diffusive terms. Furthermore, in the process of convergence, non-physical solutions, namely negative val-
ues of the turbulence quantities, may appear even if the analytical solution exists and is analytically guaranteed to remain
positive [3]. These difficulties dramatically deteriorate convergence rates of the overall flow solver, requiring several thou-
sands of iterations to reach the desired convergence criterion.
. All rights reserved.
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Therefore, one of the main challenges in modern computational fluid dynamics (CFD) lies in accelerating numerical meth-
ods for solving the mean-flow and turbulence model equations in cases where conventional methods are not optimal. One of
the fastest acceleration means known today is use of multigrid methods (MG). MG methods accelerate convergence rates of
numerical schemes by using a hierarchy of grids, based on the notion that certain numerical error modes are more efficiently
treated on a coarse grid than on a fine grid. However, a coarse grid may only be used in conjunction with a finer one, requir-
ing proper data transfer between successive grids.

MG methods rely on two basic principles: smoothing and coarse grid correction (CGC). First, standard iterative methods
(e.g., Gauss–Seidel) with good smoothing (that is, elimination of high spatial frequency modes) properties are used to treat
non-smooth errors in the solution. Pre-smoothing is required because only a smooth error is well represented both on fine
and coarse grids, while non-smooth errors exhibit aliasing on coarse grids, significantly reducing the efficiency of CGC [4].
After a smooth error is obtained on the finest grid where a solution is sought, relaxation continues on coarser grids which are
achieved by eliminating every other grid line in each coordinate direction. A coarse grid relaxation is substantially (up to four
times in 2D) cheaper than its fine-grid counterpart, and is also more efficient in eliminating errors which are relatively
smooth on a finer grid. Thus, efficiency can be increased by transferring (restricting) some of the fine-grid iterations required
for convergence, to a coarser grid, and interpolating (prolongating) the results, that is, applying a coarse grid correction, to
advance the solution on the finest grid.

While MG methods are well defined in a mathematical sense [5,6], their efficient application for RANS equations with
two-equation turbulence models is rather difficult. Among the barriers currently standing in the way of demonstrating an
optimally efficient MG method for the RANS equations is the successful incorporation of turbulence transport equations
in the multigrid framework [7]. There are two basic approaches to the incorporation of turbulence models in MG
methods:

� Mean-flow multigrid (MF-MG)
� Fully-coupled multigrid (FC-MG)

In MF-MG [8–10], the mean-flow equations are solved on all grid levels, while the turbulence model equations are inte-
grated only on the finest grid where a solution is sought, as in single-grid computations. In this approach, turbulence vari-
ables are simply injected onto coarser grids, where they are frozen. This allows bypassing numerical difficulties arising from
the destabilizing effects of productive turbulence model source terms [11]. However, mean-flow equations convergence was
proven to be highly influenced by turbulence model equations convergence [12]. Therefore, insufficient acceleration of the
turbulence transport equations due to a partial use of single-grid computations in MF-MG may result in an overall reduced
convergence rate, compared to fully-coupled multigrid.

An alternative to MF-MG, is the fully-coupled multigrid approach (FC-MG), in which both the mean-flow equations and
the turbulence model equations are solved on all grid levels that are created in a multigrid framework. Although FC-MG is
regarded as being more efficient in terms of convergence, its actual implementation is far from being straightforward. Usu-
ally, artificial stabilization techniques are used to damp numerical difficulties encountered in integration of turbulence
transport equations on coarse grid levels of the MG solution. In early phases of the simulation, when the fine-grid residual
is still large, the transferred fine-grid defects may be high. As a result, high mean-flow gradients may appear on coarse grid
levels, with the potential of causing excessive productive turbulence model source terms. Moreover, accuracy of strongly
non-linear source terms cannot be fully preserved on coarse grid levels, possibly leading to divergence or inaccurate coarse
grid correction. To improve stability, the turbulence source terms are computed on the fine grid only, and then restricted
onto coarser grid levels where they are frozen. This technique is commonly termed source-term freezing [13–18]. While it
was shown to be robust, the downside of this technique is that defects stemming from frozen source-term contributions
are not properly sampled on coarse grid levels, thus reducing the efficiency of multigrid as a solver.

The growth and decay of turbulence kinetic energy and dissipation are generally balanced thanks to a careful tailoring of
the turbulence model equations. However, when multigrid is used, typical behavior of turbulence energy and dissipation on
coarse grid levels are lost, and therefore strong singularities in the turbulence viscosity may appear. Hence, instead of apply-
ing source-term freezing, some researchers only employ turbulence viscosity freezing on coarse grid levels to increase stability
of the coupling mechanism between the mean-flow and turbulence quantities [19,20].

Another stabilization technique, specified for supersonic and hypersonic flows where shock waves may occur is termed
residual damping. Gerlinger et al. [21,22] introduced locally damped transfer operators for mean-flow residuals in the vicinity
of shock waves (using a TVD shock sensor), in regions were fine-grid residuals may be inaccurately sampled on coarse grid
levels. Damping is performed by applying an under relaxation coefficient in the MG restriction and/or prolongation phase,
thus controlling the multigrid error correction rate. Obviously, in regions where this technique is used, coarse grid levels are
less efficient for correcting fine-grid errors, since the forcing term in charge of driving the multigrid correction process is
damped. Therefore, the overall convergence rate may not be optimal.

It has been shown that the highly non-linear nature of turbulence source terms leads to their inaccurate representation
on coarse grid levels. Wackers and Koren [23] suggested the use of Galerkin operators as a means of circumventing this issue.
Instead of reconstructing the fine-grid turbulence operators on coarse grids, the operators are projected to coarse grids, thus
preventing instability due to inaccurate reconstruction of turbulence operators on coarse grids. This elegant approach was
reported to yield good results for the simulation of RANS equations coupled with Menter’s one-equation turbulence model.
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However, since Galerkin operators can only be constructed efficiently for linear equations, a local time-linearization of fine-
grid operators is required at each time step.

A successful multigrid algorithm that includes the solution of RANS turbulence model equations requires the use of a po-
sitive-preserving scheme. Positivity-preserving difficulties within MG may appear in the smoothing (relaxation) and prolon-
gation stages. The positivity preserving difficulties of turbulence quantities in single-grid computations (or on the finest grid
level of a multigrid hierarchy) are amplified on coarse grid levels. Inappropriate numerical treatment of turbulence equations
may result in stall or divergence due to the appearance of non-physical values of turbulence quantities, leading to inefficient
coarse grid correction and to the loss of multigrid robustness. Moreover, as the coarse grid correction can be negative, it is
possible that the turbulence quantities on the fine-grid admit non-physical negative values. The common technique to avoid
negative values of turbulence quantities in the prolongation stage is to employ artificial fixes [16,24] by either allowing only
positive increments, or by locally neglecting corrections that cause loss of positivity. This guarantees that MG does not in-
duce loss of positivity, but in regions where a coarse grid correction is neglected, convergence rates may deteriorate. In con-
clusion, while the above techniques increase stability of multigrid for the RANS equations coupled with two-equation
turbulence models, they may also hinder convergence rates.

The present study focuses on designing a multigrid method for an implicit solver of the compressible RANS equations,
together with a two-equation turbulence model. The work was guided by the belief that designing a robust multigrid meth-
od for this problem strongly depends on use of a highly stable scheme for the turbulence model equations. It was realized
that some of the difficulties encountered in the multigrid solution of RANS turbulence models occur in fact due to the use of
insufficiently stable relaxation schemes, rather than to the multigrid concept itself. Therefore, the unconditionally positive-
convergent (UPC) time-integration implicit scheme for turbulence transport equations developed by Mor-Yossef and Levy
[25] is adopted in this work and successfully extended for use in multigrid methods, allowing for smooth incorporation
of these equations in a multigrid framework for the RANS equations. The proposed method is based on a full approximation
storage (FAS) fully-coupled multigrid approach (FC-MG). The method is nearly free of stabilization fixes and other techniques
commonly used to avoid numerical difficulties.
2. Governing equations

The governing equations are obtained by Favre-averaging the Navier–Stokes equations (RANS) and modeling the Rey-
nolds stress. The unknown Favre-averaging Reynolds stress tensor is modeled in this work via linear or non-linear two-equa-
tion turbulence models. The linear model used is the k-x turbulence model developed by Kok [26], which is considered to be
topology-free and was designed to resolve the well-known dependency on free-stream values of x. The non-linear model
used is based on Kok’s model together with the explicit algebraic Reynolds stress model (EARSM) developed by Wallin
and Johansson [27]. Hereafter the linear and non-linear turbulence models are referred to as kx-Linear and kx-EARSM,
respectively.

In a compact conservation law form, the 2D RANS equations may be expressed in Cartesian coordinates as follows:
oQ

ot
þ o F c �F dð Þ

ox
þ o Gc � Gdð Þ

oy
¼ S: ð1Þ
The vector Q ¼ fQ ;qg denotes the dependent variables vector of mean-flow equations, Q, and of the turbulence model equa-
tions, q, given as
Q ¼

q
qu

qv
E

26664
37775; q ¼

qk

qx

� �
: ð2Þ
The fluid density is denoted by q, the Cartesian velocity vector components are denoted by u and v, and E denotes the total
energy. The turbulence kinetic energy is denoted by k. The second turbulence quantity is denoted by x, representing the
specific turbulence dissipation rate. The convective flux vectors are denoted by F c ¼ fFc; fcg and Gc ¼ fGc;gcg, where Fc,
Gc and fc, gc are the mean-flow and turbulence model equations convective flux vectors, respectively:
Fc ¼

qu

quuþ p

quv
uðEþ pÞ

26664
37775; Gc ¼

qv
quv

qv2 þ p

vðEþ pÞ

26664
37775; ð3Þ

fc ¼
quk

qux

� �
; gc ¼

qvk

qvx

� �
: ð4Þ
The diffusive flux vectors are denoted as F d ¼ fFd; fdg and Gd ¼ fGd;gdg, where Fd, Gd and fd, gd are the mean-flow and tur-
bulence model equations diffusive flux vectors, respectively:
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Fd ¼

0
sxx

sxy

usxx þ vsxy þ jd
oT
ox

26664
37775; Gd ¼

0
sxy

syy

usxy þ vsyy þ jd
oT
oy

266664
377775; ð5Þ

fd ¼
lk

ok
ox

lx
ox
ox

" #
; gd ¼

lk
ok
oy

lx
ox
oy

" #
: ð6Þ
The fluid temperature is denoted by T and jd = jl + jt represents the thermal conductivity of the fluid with jl and jt being
the molecular and turbulent thermal conductivity coefficients, respectively. The shear stresses are defined as
sxx ¼ 2ðlþ ltÞ
ou
ox
� 2

3
ðlþ ltÞ

ou
ox
þ ov

oy

� �
� 2

3
qkþ wsnl

xx; ð7Þ

syy ¼ 2ðlþ ltÞ
ov
oy
� 2

3
ðlþ ltÞ

ou
ox
þ ov

oy

� �
� 2

3
qkþ wsnl

yy; ð8Þ

sxy ¼ ðlþ ltÞ
ou
ox
þ ov

oy

� �
þ wsnl

xy; ð9Þ
where snl
xx, snl

xy, and snl
yy represent the supplementary high-order terms used in the EARSM model, and the scalar w distin-

guishes between the linear (w = 0) and non-linear (w = 1) models. The molecular viscosity, l, is calculated from Sutherland’s
law, and lt denotes the turbulent viscosity. The turbulence diffusive flux vector coefficients lk,lx are defined as
lk ¼ lþ lt

rk
; ð10Þ

lx ¼ lþ lt

rx
; ð11Þ
where rk,rx are model-specific closure coefficients. The mean-flow equations are closed using the equation of state for a
perfect gas, given by
p ¼ E� 1
2
q u2 þ v2� �� �

ðc� 1Þ; ð12Þ
where c is the ratio of specific heats (cp/cv), set to c = 1.4. In the flows examined in this work, source terms appear only due to
turbulence model equations. Therefore, the source-term vector S is represented by
S ¼

0
0
0
0
Sk

Sx

2666666664

3777777775
: ð13Þ
The source terms Sk,Sx are given by
Sk ¼ Pk � b�qkx; ð14Þ

Sx ¼ ax
x
k

Pk � bqx2 þ rd
q
x

max
ok
ox

ox
ox
þ ok

oy
ox
oy

;0
� �

; ð15Þ
where Pk denotes the production term:
Pk ¼ lt 2
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ox

� �2

þ ov
oy

� �2
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þ ov

ox
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� �
: ð16Þ
A unified formulation of the turbulent viscosity of the linear and non-linear turbulence models is given in:
lt ¼ ð1� wÞqk
x
þ wClqk max

1
b�x

; 6:0
ffiffiffiffilpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b�kxq
p !

: ð17Þ
Detailed formulation of the high-order part of the Reynolds stress tensor, namely snl
xx, snl

xy and snl
yy, and of the coefficient Cl

may be found in [27]. The remaining model-specific closure coefficients are given in Table 1.



Table 1
Turbulence models constants.

Model type rk rx rd b b* ax

kx-Linear 1.5 2.0 0.5 0.075 0.09 0.5531666
kx-EARSM 1.5 1.81 0.3 0.075 0.09 0.53
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3. Numerical method

A conservative cell-centered finite volume methodology is employed to discretize the governing equations on structured
grids. Let Ca denote the control area (defined by a grid area element), and let oC denote the control area boundary, with
n = [nx,ny]T being the outward-pointing unit normal vector to oC. Therefore, the integral form of Eq. (1) for a control area
Ca can be expressed as
o

ot

Z
Ca

QdAþ
Z

oC
Hc �Hdð Þdl ¼

Z
Ca

SdA; ð18Þ
where Hc ¼ F cnx þ Gcny, and Hd ¼ F dnx þ Gdny.

3.1. Spatial discretization

The semi-discrete form of Eq. (18) for cell i of a non-deforming grid is given by
Ai
dQi

dt
¼ �

X
j2NðiÞ

Hcij
�Hdij

	 

lij þ SiAi �Ri; ð19Þ
where Qi is the vector of cell-averaged conservative variables, and Si is the cell source vector. The terms Hcij
and Hdij

are the
convective and diffusive fluxes, respectively, normal to the interface ij shared by cell i and its neighboring cell j. Ai is the cell
area, and t represents the time. The term lij is the face length of the interface ij, and N(i) denotes the set of cell i’s neighbors
(direct face neighbors). The vector Ri signifies the right-hand side (residual) of the equation set:
Ri ¼ RT ; rT
n oT

i
; ð20Þ
where R represents the residual of the mean-flow equations, and r represents the residual of the turbulence model
equations.

The convective flux vector of the mean-flow equations is computed at the cell interface using the HLLC scheme proposed
by Batten et al. [28]. The left and right state vectors of the convective flux are evaluated using a third-order bias MUSCL
method, with the van Albada limiter [29] used to suppress oscillations in the solution. The diffusive flux vector of the
mean-flow equations is discretized by employing central differencing based on the diamond stencil [30].

The convective flux vector of the turbulence model equations is computed based on the passive scalar approach [31],
within the HLLC numerical framework [28]. The convective flux vector of the turbulence model equations, normal to the
interface ij, is evaluated with first-order accuracy as follows:
fcð Þij ¼

Unð Þiqi; SL > 0;
SL� Unð Þi

SL�SM
SMqi; SL 6 0 < SM ;

SR� Unð Þj
SR�SM

SMqj; SM 6 0 6 SR;

Unð Þjqj; SR < 0;

8>>>>><>>>>>:
ð21Þ
where Un is the velocity normal to the interface ij, Un = unx + vny. The signal velocities SL, SR, and SM are computed according to
Ref. [28]. The turbulence model diffusive flux vector is evaluated according to the thin-layer approximation, namely:
fdð Þij ¼
lk
jd�nj 0

0 lx
jd�nj

" #
ij

1
qj

qj �
1
qi

qi

 !
; ð22Þ
where dij is the distance vector between cell i and cell j centers.

3.2. Time integration

Implicit time marching of both the mean-flow, and the turbulence model discretized equations is employed, based on the
first-order implicit backward Euler method:
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A
Dt
I � oR

oQ

� �n

DQn ¼Rn; ð23Þ
where I is the identity matrix, and the D operator is defined as the increment between time levels n and n + 1. Eq. (23) is
solved using the alternating line symmetric Gauss–Seidel method, in a loosely-coupled manner. Namely, the implicit Jaco-
bian is approximated as follows:
oR

oQ

� �
ij

¼
oR
oQ

h i
4�4

; ½0�4�2

½0�2�4;
or
oq

h i
2�2

264
375

ij

: ð24Þ
Loosely-coupled time-integration possesses several advantages over a coupled strategy. It is easy to implement and it pro-
vides the enhanced flexibility required to design a stable and efficient scheme for the turbulence model equations.

3.2.1. Mean-flow equations time integration
The algebraic set of the discretized mean-flow equations may be written as
A
Dt
I � oR

oQ

� �n

DQ n ¼ Rn: ð25Þ
The evaluation of the exact Jacobian oR
oQ , of the high-order, non-linear explicit operator R is very complicated. To alleviate this

difficulty, the common practice is to approximate the Jacobian using the spatial lower-order accuracy of the explicit oper-
ator, meaning that the approximated Jacobian of the convective part is based on a first-order spatial accuracy of the convec-
tive explicit operator. The Jacobian of the diffusive part is based on the thin-layer approximation, namely, the approximated
Jacobian is based on a compact stencil which takes into account only direct face neighbors. Moreover, the non-linear Rey-
nolds-stress tensor that appears in the mean-flow equations is treated implicitly only with regard to its linear part. The
remaining high-order terms, namely snl

xx, snl
xy and snl

yy, are treated explicitly. In the current work, the approximated Jacobian
of the mean-flow convective part is evaluated using the HLLC Jacobian by Batten et al. [28]. The diffusive part of the Jacobian
is calculated analytically. An implicit treatment of boundary conditions is employed only for wall boundaries.

To improve iterative convergence to a steady-state solution, the B2 scheme proposed by Batten et al. [28] is used. The B2
scheme is a modified variant of the backward Euler time-integration method. Denoting the time integration given in Eq. (25)
by
DQ n ¼ B1ðQ n;DtÞ ) Q nþ1 ¼ Q n þ DQ n; ð26Þ
the B2 scheme is defined as two successive modified B1 steps as follows:
1st step : DQ � ¼ B1 Q n;Dt=2
� �

) Q � ¼ Q n þ DQ �;

2nd step : DQ ¼ B1ðQ �;DtÞ ) Q nþ1 ¼ Q � þ DQ=2:
ð27Þ
As pointed out by Batten et al. [28], the B2 scheme may alleviate convergence difficulties that are associated with the high-
frequency fluctuations of limiters.

3.2.2. Turbulence model equations time-integration method
Similarly to the algebraic set of the discretized mean-flow equations, the algebraic set of the discretized turbulence model

equations is given by
A
Dt
I � or

oq

� �n

Dqn ¼ rn: ð28Þ
A straightforward implementation of the turbulence model equations’ exact Jacobian, or
oq, usually leads to an unstable scheme

that exhibits convergence and positivity-preserving difficulties. These numerical difficulties are even further amplified in a
multigrid framework. As already mentioned, any lagging in the turbulence model time integration, with respect to that of the
mean-flow equations, may hinder the convergence rate. Therefore, a highly stable implicit scheme for the turbulence model
equations is vital for the success of FC-MG computations. It should be noted that the B2 scheme is not used for time inte-
gration of the turbulence model equations, and therefore Eq. (28) is employed only in the second step of the B2 scheme
of the mean-flow equations.

In this work, the unconditionally positive-convergent (UPC) time integration implicit scheme for turbulence transport
equations developed by Mor-Yossef and Levy [25] is adopted and successfully extended for use in multigrid methods. The
key idea of the UPC scheme is the design of the implicit operator to form an M-matrix [32]. Specifically, the Jacobian,
� or

oq, is approximated by a matrix M	 � or
oq such that it fulfills the following two conditions:

1. M is an M-matrix
2. rþMq is a non-negative vector (i.e., all its entries are non-negative)
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By substituting the matrix M for the matrix � or
oq, Eq. (28) may be rewritten as
Fig. 1.
(referre
A
Dt
I þM

� �n

Dqn ¼ rn; ð29Þ
Eq. (29) represents an unconditionally positive-convergent scheme. Complete details of the proof and construction may be
found in Ref. [33].

Fig. 1 demonstrates the increased efficiency of a single-grid (SG) solver based on the UPC scheme, compared to a solver
that is based on a standard implicit scheme for the turbulence equations. The flow simulation was conducted about the
RAE2822 airfoil at M1 = 0.734, Re1 = 6.5 � 106, and a = 2.54� (referred to as case 9 in Ref. [34]), using the kx-Linear turbu-
lence model and a 275 � 67 C-type grid. It can be seen that the use of the UPC scheme saves nearly 80% of the computational
time that is required by a standard implicit scheme (measured in terms of WU-equivalent to a time step in a single-grid com-
putation). Note that an infinite Courant–Friedrichs–Lewy (CFL) number was used for integrating the turbulence model equa-
tions (CFLT) with the UPC scheme, while only CFLT = 10 or less yielded stable results using the standard implicit scheme.
Furthermore, thanks to the UPC scheme, CFL numbers as high as CFL = 200 were allowed for the mean-flow equations, while
a standard implicit scheme converged only with CFL = 100 or less for the mean-flow equations. This clearly demonstrates the
significant contribution of the UPC scheme to the basic flow solver robustness.

In Ref. [33] the diffusive implicit operator was designed in a similar manner to the convective implicit operator. However,
in this work, a further improvement to the scheme with regard to the diffusive implicit operator is presented. The motivation
in reconstruction of the implicit diffusive operator was to achieve a form as close as possible to the exact discrete Jacobian,
while still guaranteeing the positivity of the turbulence quantities. Let the vector rdi

denote the turbulence diffusive flux vec-
tor, given by
rdi
¼
X

j2NðiÞ
fdij

lij ¼
X

j2NðiÞ
Di

ijqi þ
X

j2NðiÞ
Dj

ijqj: ð30Þ
For the thin-layer approximation, the matrix Di
ij is defined as
Di
ij ¼ �

lij
qi

lk
jd�nj

	 

0

0 lx
jd�nj

	 

264

375
ij

; ð31Þ
and the matrix Dj
ij is defined as
Dj
ij ¼

lij

qj

lk
jd�nj

	 

0

0 lx
jd�nj

	 

264

375
ij

¼ �qi

qj
Di

ij: ð32Þ
It can be seen that the differences between the matrices Di
ij and Dj

ij stem from compressibility effects (qi – qj). Based on this
observation, the turbulence diffusive flux vector may be recast as follows:
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Comparison of single-grid (SG) convergence histories for simulating flow about the RAE2822 airfoil at M1 = 0.734, Re1 = 6.5 � 106, and a = 2.54�
d to as case 9 in Ref. [34]), using a 275 � 67 C-type grid. UPC (CFL = 200, CFLT =1) vs. Standard (CFL = 100, CFLT = 10).
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rdi
¼
X

j2NðiÞ
Di

ijðqi � qjÞ þ
X

j2NðiÞ
qj

1
qj
� 1

qi

 !
Dj

ijqj: ð33Þ
To simplify the construction of the implicit Jacobian, each of the matrices Di
ij;D

j
ij, are split into their positive and negative

parts. Let the matrix A ¼ ðakl 2 R2�2Þ denote any of the matrices Di
ij, and Dj

ij. Then a matrix A can be split into its positive
and negative parts as follows:
A ¼ AP �AN; ð34Þ
where the matrices AP ¼ ððaPÞkl 2 R2�2Þ and AN ¼ ððaNÞkl 2 R2�2Þ are defined as
aPð Þkl ¼
1
2
jaklj þ aklð Þ; ð35Þ

aNð Þkl ¼
1
2
jaklj � aklð Þ: ð36Þ
Then the turbulence diffusive residual can be rewritten in terms of the positive and negative parts appropriately:
rdi
¼
X

j2NðiÞ
Di

ij

	 

P
� Di

ij

	 

N

h i
qi � qj

� �
þ
X

j2NðiÞ
qj dP � dN½ � Dj

ij

	 

P
� Dj

ij

	 

N

h i
qj; ð37Þ
where dP and dN are defined as
dP ¼max
1
qj
� 1

qi
; 0

 !
; dN ¼max

1
qi
� 1

qj
;0

 !
ð38Þ
Moreover, thanks to the thin-layer approximation, the matrices ðDi
ijÞP and ðDj

ijÞN are identically zero, hence, Eq. (37) becomes:
rdi
¼
X

j2NðiÞ
� Di

ij

	 

N
ðqi � qjÞ þ

X
j2NðiÞ

qj dP � dN½ � Dj
ij

	 

P
qj: ð39Þ
For the purpose of deriving the desired implicit operator appropriately, Eq. (39) is rearranged as follows:
rdi
¼
X

j2NðiÞ
� Di

ij

	 

N
� qjdN Dj

ij

	 

P

h i
T i

j

h i
qi þ

X
j2NðiÞ

qjdP Dj
ij

	 

P
þ Di

ij

	 

N

h in o
qj; ð40Þ
where the matrix T i
j is defined as
T i
j ¼

ðqkÞj
ðqkÞi

0

0 ðqxÞj
ðqxÞi

24 35: ð41Þ
Denote the implicit diffusive operator part of M by the matrix Md. Let ðMdÞii and ðMdÞij be the diagonal and off-diagonal
block matrices of row i of the matrix Md, respectively. Then, they are proposed to be evaluated as follows:
Mdð Þii ¼
X

j2NðiÞ
Di

ij

	 

N
þ qjdN Dj

ij

	 

P
T i

j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
E

2664
3775; ð42Þ

Mdð Þij ¼ � Di
ij

	 

N
; ð43Þ
It should be emphasized that the matrix E (labeled in Eq. (42)) is non-negative due to compressibility effects only. It is
reasonable to assume that in general, in regions where diffusion terms are dominant (e.g., near-wall regions), these effects
are negligible. Based on this argument, it is reasonable to argue that the leading term of the matrix ðMdÞii is the matrix ðDi

ijÞN .
Hence, in one dimension, the line entries of the improved implicit diffusive operator matrix ,Md, when neglecting compress-
ibility effects, have the form of {�1, 2, �1}. In contrast, in the original UPC scheme, the line entries have the form of {�1/2, 3,
�1/2}. It should be emphasized that the exact discrete Jacobian in the incompressible case is identical to the implicit oper-
ator of the improved scheme in the incompressible limit (i.e, also of the form {�1, 2, �1}). The improved implicit operator in
the incompressible limit constitutes a positive definite matrix, but not an M-matrix. Yet, for all practical purposes, the addi-
tion of the pseudo-time derivative of the solution vector, to the implicit operator, eliminates this issue, so the improved oper-
ator is in fact represented by an M-matrix. Overall, the improved diffusive operator was successfully reconstructed to be
closer to the exact discrete Jacobian, while still complying with the positive-preserving scheme. To study the convergence
characteristics of the original and improved versions of the turbulence implicit diffusive operator, a numerical simulation
of flow about the NACA4412 airfoil at high incidence is performed. Fig. 2 demonstrates the increased efficiency of the im-
proved UPC scheme compared to the original UPC scheme. It can be seen that the use of the improved UPC scheme increases
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the overall efficiency, measured in terms of WU, by a factor of 1.3. It is interesting to note that even though the mean-flow
and turbulence equations are integrated in a loosely-coupled manner, use of the improved UPC turbulence equations time-
integration scheme also improves the mean-flow equations convergence rate.

In conclusion, the UPC scheme ensures the positivity of turbulence variables, and the stability of numerical time integra-
tion of turbulence equations, for any time-step. A further improvement of the scheme with regard to the implicit treatment
of turbulence diffusive flux is presented, leading to increased efficiency.
4. Multigrid method

For non-linear equations such as the RANS and turbulence model equation set, the full approximation storage (FAS) mul-
tigrid algorithm [35] is mostly used. In multigrid methods, a hierarchy of grids is constructed based on successive coarsening
(e.g., elimination of every other grid line, in each direction) of a given fine grid of mesh size h. The resulting grids are of typ-
ical mesh sizes 2h, 4h, 8h, etc. Normally, 4 fine-grid cells compose a single underlying coarse grid cell.

The numerical solution is sought on the finest grid in the hierarchy, while the underlying coarse meshes are used to damp
low-frequency error modes that can not be efficiently reduced using fine-grid relaxations. Pseudo-time iterations (i.e.,
Gauss–Seidel relaxation, as described in Sections 3.2.1, 3.2.2) are employed on all grid levels to smooth errors of wavelengths
comparable to the corresponding mesh size. As a result, the entire error spectrum is reduced at a comparable rate, leading to
notably faster convergence characteristics.

The governing equations, given in integral form in Eq. (18), may be rewritten in operator notation as
o

ot

Z
Ca

QdA ¼ �
Z

oC
ðHc �HdÞdl�

Z
Ca

SdA
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N ðQÞ

; ð44Þ
where N ðQÞ is a non-linear operator representing the RANS and turbulence model equations, operating on the dependent-
variable vector Q. The equivalent discrete operator, sampled on a grid of mesh size h, is denoted by N

hðQhÞ.

4.1. Basic multigrid algorithm

The basic multigrid algorithm employed in this work is based on a V-cycle composed of pre-relaxation, restriction, coarse
grid correction and post-relaxation (see Fig. 3). Each V-cycle is based on recursively invoking the following two-grid algo-
rithms where h and H denote fine and coarse grid levels, respectively.

4.1.1. Fine-grid pre-relaxation: N hðQhÞ ¼ �Rh

Pre-relaxation sweeps are performed on the fine grid to achieve an approximate solution Qh and a corresponding smooth
numerical residual Rh. One or two pre-relaxation sweeps are necessary to ensure that transferred fine-grid defects (resid-
uals) are correctly sampled on coarser grids in the hierarchy, with relatively small aliasing.
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Fig. 3. A schematic description of the V-cycle. Execution proceeds from left to right and top (finest grid) to bottom (coarsest grid) and back up again. On
each grid but the coarsest, pre-relaxations are performed prior to transferring (restricting) to the next-coarser grid and post- relaxations are performed after
interpolating (prolongating) and adding a coarse grid correction.
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4.1.2. Restriction to a coarser grid: N H IH
h Q

h
	 


�N
H

IH
h Q

h
� �

¼ eI H
h ðR

hÞ
Using numerical restriction operators, appropriate coarse grid equations are constructed to reduce low-frequency fine-

grid errors. An area-weighted restriction operator IH
h is employed to transfer the current fine-grid approximate solution

Qh to a coarser grid. The transferred fine-grid residual, eI H
h ðR

hÞ, is calculated by summing four equivalent fine-grid residuals.

4.1.3. Coarse grid relaxations: N HðQHÞ ¼N
HðIH

h Q
hÞ þ eI H

h ðRhÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fine�grid Constants

�RH

The coarse grid equation is solved using local iterations, starting from the initial solution �QH
0 ¼ IH

h Q
h. Coarse grid relax-

ations yield an approximate solution �QH , and a corresponding coarse grid residual RH . Note that the first iteration on the
coarse grid is driven only by eI H

h ðR
hÞ, since N

HðQH
0 Þ ¼N

HðeI H
h

�QhÞ. Note that the first two expressions on the right-hand side
of the coarse grid equation, which originate from the fine grid, remain constant throughout coarse grid relaxations.

Numerical tests showed that for this problem, FAS multigrid does not require a direct and most accurate solution on the
coarsest grid to ensure efficient acceleration. In fact, attempts to use a large number of iterations in order to achieve an accu-
rate solution on the coarsest grid yield unrealistically large values of turbulent viscosity originating from large initial fine-
grid turbulence defects contributing to uncontrolled turbulence production on coarser grids.

4.1.4. Coarse grid correction: DQh ¼ Ih
HðQH � IH

h Q
hÞ

The approximate coarse grid solution QH is transferred (prolongated) back to the fine grid, where it is used to correct the
current fine-grid solution Qh. The prolongation operator is based on bi-linear interpolation. In some cases, straightforward
application of turbulence coarse grid corrections may lead to loss of positivity of fine-grid turbulence quantities. This effect
arises mainly in the first few near-wall adjacent cells. In this work, a simple positivity-preserving algorithm is applied by an
appropriate damping of the coarse grid corrections. Let �qh

i denote the current turbulence fine-grid solution at cell i, and D�qh
i

denote the coarse grid correction to be applied to that solution. Then, the following algorithm is proposed:

1. If �qh
i þ D�qh

i <¼ 0 then
(a) If �qh

i þ 1
2 D�qh

i > 0 then
i. D�qh

i ¼ 1
2 D�qh

i

(b) Else, if �qh
i þ 1

4 D�qh
i > 0 then

i. D�qh
i ¼ 1

4 D�qh
i

(c) Else
i. D�qh

i ¼ 0

2. End if
3. �qh

i ¼ �qh
i þ D�qh

i

Note that the above algorithm is performed separately for both turbulence quantities (qk and qx), and that damping is
always applied to coarse grid corrections of both quantities (regardless of which quantity is examined) to preserve the rela-
tion between them, as represented by turbulent viscosity. In addition, it was observed that turbulence coarse grid corrections
near boundaries are prone to inaccuracies due to the nature of the turbulence model boundary conditions. To minimize this
effect, coarse grid ghost cells are omitted from the stencil of coarse grid cells involved in the interpolation of a CGC. Never-
theless, it is believed that thanks to the fast convergence characteristics of the UPC scheme, the losses of the MG method
efficiency due to the CGC damping is minimized. One should bear in mind that for the commonly used two-equation turbu-
lence models (such as the k-x and the k-�) the turbulence model quantities vary strongly near the wall. Therefore, bi-linear
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interpolation may not be sufficiently accurate. Modified interpolations may alleviate this issue by offering better represen-
tation of large near-wall gradients (this issue is left for future study).
4.1.5. Fine-grid post-relaxation: N hðQhÞ ¼ �Rh

Aside from valuable corrections, application of a coarse grid correction also introduces new errors to the fine-grid solu-
tion, arising from interpolation inaccuracies. Several post-iterations are performed to reduce these new errors. In the present
work it was found that at least four post-relaxations are required to efficiently reduce the new error components introduced
by interpolating and applying a coarse grid correction.
4.2. Cycling strategy

Based on the loosely-coupled time-integration approach used in single-grid solutions, two main multigrid cycling strat-
egies are identified and compared in this work. First, a separated multigrid cycling strategy was considered, based on two
cycles (see Fig. 4(a)): A mean-flow cycle where only mean-flow equations are solved while turbulence variables remain fro-
zen, followed by a turbulence cycle where mean-flow variables are frozen and turbulence model equations are solved.

In contrast to separated cycling, combined cycling is based on a single cycle combining both mean-flow and turbulence
equations relaxations (see Fig. 4(b)). In a way, such a strategy increases the time-evolution compatibility of the mean-flow
and turbulence solutions. Comparisons show that a dramatic increase of up to four times in multigrid efficiency for RANS
may be gained by adopting the combined strategy (see Fig. 5). However, since both sets of equations are solved in conjunc-
tion on every grid level, combined cycling is considered less stable than the separated cycling alternative. Nevertheless, by
Fig. 4. Multigrid cycling strategies (
 – mean-flow relaxation; h – turbulence model relaxation).
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using loosely-coupled time-integration together with the UPC implicit scheme, overall stability is greatly increased, allowing
the benefits of combined cycling to be reaped without facing numerical instability or divergence.
4.3. Laminar-turbulent transitional regions in multigrid

A basic requirement of FAS multigrid methods is that the coarse grid resolution would be sufficient to appropriately sam-
ple the fine-grid problem. In other words, it is required that all the relevant discrete operators on the coarse grid levels suf-
ficiently resemble the corresponding operators on the fine grid. When it comes to RANS turbulence models this requirement
is hard to meet. That is why most FC-MG methods require various artificial stabilizing techniques.

Preliminary numerical experiments show that the present FC-MG method does not require any stabilizing techniques.
Still, in a specific region of the flow field, a problem of meeting the coarse-fine-grid operators resemblance requirement
is identified. It was found that in the laminar-turbulent transitional boundary layer region, at coarse grid levels, the devel-
oped turbulent boundary layer begins at a different location from the one in the fine grid.1 Moreover, it was observed that the
differences in the laminar-turbulent transitional boundary layer starting point affect the mean-flow solution there, which even-
tually hinders the convergence behavior of the mean-flow equations, as well as that of the turbulence model equations. Numer-
ical experiments showed that the problem did not appear when an extremely fine grid was used. However, such a grid is
prohibitively expensive in practice. For any matter of practical use, a simple algorithm is adopted in the present work: once this
region is identified, the corresponding coarsest grid turbulence solution correction is dropped to avoid loss of fine-grid accuracy.
In particular, this drop was applied to the coarsest grid correction of the turbulence kinetic energy equation only. Fig. 6 shows
the convergence behavior of the RANS equations, during simulation of the flow about the RAE2822 airfoil. Two MG simulations
using the kx-Linear turbulence model were performed: the first included all coarse grid levels corrections, termed hereby lt-cgc,
while the second simulation neglected the coarsest grid correction of the turbulence kinetic energy equation only, termed here-
by wlt-cgc. It can be seen from the figure that using the lt-cgc strategy, the convergence of the mean-flow and of the turbulence
model equations stalls and displays limit-cycle oscillatory behavior. In contrast, using the wlt-cgc strategy the convergence was
not disturbed. Moreover, it can be seen that prior to the stall point, the convergence pattern using these two strategies is similar.
4.4. Extension of the UPC scheme for multigrid

The original UPC scheme ensures positivity and convergence for time-integration of turbulence model equations in sin-
gle-grid computations. However, in multigrid, a modification of the UPC scheme is required to retain the positivity of tur-
bulence variables on coarse grid levels as well. On coarse grid levels, forcing terms (transferred fine-grid residuals, and
residuals calculated based on the transferred solution) of the turbulence model equations may be regarded as additional
source terms. Unless they are appropriately treated they may cause loss of positivity of turbulence variables. Hereafter,
an appropriate numerical treatment of these terms is presented, aimed at extending the UPC scheme for use in multigrid
methods.
1 The identification of the transitional location was based on the place where the turbulent viscosity reached the value of the molecular viscosity.
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Let n(q) denote the non-linear discrete operator representing the turbulence model equations alone, correspondingly
operating on the turbulence variables vector q (similar to Eq. (44)). A typical discrete coarse grid equation for the turbulence
variables is of the form:
nH �qH� �
¼ nH IH

h
�qh� �
þ eI H

h rh� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
forcing term

�rH ; ð45Þ
where the forcing term (labeled in Eq. (45)) denoted by
cH � ck; cw½ � , nH IH
h

�qh
� �

þ eI H
h ðrhÞ; ð46Þ
is a constant vector. Consequently, the time-marching delta form of the discretized turbulence model equations on the
coarse grid level is given in (the index H is hereafter omitted for convenience):
A
Dt
I þM

� �n

Dqn ¼ rn � c: ð47Þ
The motivation is to modify the implicit operator to appropriately account for the new source term, in the form of vector c.
First, the vector (�c) is decomposed to positive and negative parts (based on the scalar decomposition defined in Eq. (34)).
The resulting set of equations is
A
Dt
I þM

� �n

Dqn ¼ rn þ cP � cN: ð48Þ
For the purpose of extending the UPC scheme for use on coarse grid levels, the implicit delta form of Eq. (48) is split and
rewritten as follows (assuming Dt ?1):
Mnqnþ1 ¼ rn þMnqn þ cP � cN: ð49Þ
The stabilizing term originating from discretization of the time derivative is dropped in order to ensure an unconditionally
positive-convergent scheme. Bearing in mind that the basic UPC scheme (designed for single-grid computations) ensures
that the vector rn þMnqn is non-negative, on coarse grid levels, the presence of the additional constant vector �cN may
not meet the condition of a non-negative right-hand side of the non-delta form equation, namely that the right-hand side
vector of Eq. (49) will be non-negative. By approximating cN as
cN 	 Cqnþ1; ð50Þ
where the matrix C is defined as follows:
C ¼
ðckÞN
ðqkÞn 0

0 ðcxÞN
ðqxÞn

24 35: ð51Þ
Eq. (49) may be recast as
MþC½ �nqnþ1 ¼ rn þMnqn þ cP: ð52Þ
Since the left-hand side matrix, ½Mþ C� is also an M-matrix, and since the right-hand side vector of Eq. (52), rn þMnqn þ cP ,
is non-negative, positivity of the vector qn+1 is unconditionally guaranteed. Finally, the delta form of the extended UPC
scheme for coarse grid levels is attained by adding the vector –Cnqnð� �cNÞ to both sides of Eq. (52), and returning the vector
Mnqn to its original place on the left-hand side of the equation:
A
Dt
I þMþ C

� �n

Dqn ¼ rn � c: ð53Þ
Although, Eq. (53) guarantees positivity and convergence for any time step, in practice it was found that using an infinite
time step for the turbulence model equations results in an excessive and unrealistic build-up of turbulent viscosity values on
coarse grid levels. This anomaly was mainly noted during early stages of the simulation when the transferred fine-grid de-
fects are still large. However, numerical experiments show that stable simulations can be achieved with a turbulence model
CFLT number as high as twice the CFL number that is used for the mean-flow equations. It should be emphasized that real-
izability constraints [36] that were derived for the basic turbulence model are not adequate for coarse grid levels, since the
additional fine-grid defect may be regarded as an additional source or production term, which the basic realizability con-
straints do not account for. This is believed to be the origin of the excessive build-up of turbulent viscosity on coarse grid
levels.
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5. Numerical examples

Three well-known test cases are simulated and examined using the proposed multigrid method. The aim of the tests is
twofold: first to study the convergence characteristics of the new multigrid algorithm; and second, to verify that the pro-
posed procedure indeed preserves the positivity of the turbulence variables. The first test case is the separated flow about
the NACA4412 airfoil at high incidence. The second test is the transonic flow about the RAE2822 airfoil. Internal flow through
a plane asymmetric diffuser is the last test case. Several general remarks and definitions should be made prior to proceeding:

� The convergence criterion was set to a drop of eight orders in the magnitude of the mean-flow equations residual, com-
pared to the initial residual.
� Convergence was measured in normalized work units (WU), each equal to the computational time that is required to per-

form a single fine-grid relaxation sweep.
� A uniform CFL number was used on all grid levels of a given simulation. The maximum CFL (as stated in the description of

the simulation) was achieved after 10 cycles, or 40 iterations, in multigrid and single-grid simulations, respectively.
� A multigrid hierarchy of 3 grid levels was used in all simulations that were conducted in this work. In addition, a hier-

archy of 4 grid levels was used in two of the test cases (marked by ‘‘MG 4L”).
� It is important to emphasize that in all conducted simulations, no clipping of turbulence variables2 was employed, nor

were there any bounds enforced on turbulence model terms.

5.1. Boundary and initial conditions

Characteristic boundary conditions based on the Riemann invariant are used for the mean-flow equations, and enforced at
subsonic inflow and outflow regions. The inflow turbulence kinetic energy is evaluated according to the relation
k ¼ 3

2 ðTu � U1Þ2 where Tu represents the turbulence intensity. The inflow turbulence dissipation rate is set so that normalized
inflow turbulent viscosity is equal to lt1 = 0.01. At the outflow boundary, turbulence variables are extrapolated from interior
values. Wall boundary conditions for the turbulence kinetic energy are set to k = 0, while the turbulence dissipation rate at
the wall is determined following the treatment proposed in Ref. [14]:
2 Exc
xwall ¼ CN
19
9

6mwall

b Dy1ð Þ2
; ð54Þ
where CN = 0.1 �min[50, max(10, Re1Dy1 � 20)], Re1Dy1 is the cell Reynolds number and D y1 denotes the distance to the
first cell center neighboring the wall, as measured from the wall. The initial solution of the mean-flow equations and of the
turbulence model equations is set to uniform free-stream flow throughout the flow field.

5.2. NACA4412 airfoil

Simulation of the flow about a NACA4412 airfoil at high incidence is a well-known test for a solver’s ability to accurately
resolve high lift separated flows. In the current work, flow about the airfoil at an incidence of a = 13.87�, a Mach number of
M1 = 0.2 and a Reynolds number of Re1 = 1.52 � 106 is simulated using the kx-Linear turbulence model, and compared to
the experimental results of Ref. [37]. Two different grid topologies were examined: a C-type grid, and an O-type grid. Com-
mon grid parameters are given in Table 2.

At experimental flow conditions [37], a steady trailing-edge separation is present. Fig. 7 shows a comparison of calculated
stream-wise velocity profiles and experimental data at four stations along the upper airfoil surface (g represents the axis
perpendicular to the airfoil surface). The numerical results appear to be in good agreement with the experimental results.
Specifically, the velocity profile at the separation region is accurately predicted.

A comparison of convergence histories recorded using the single-grid and multigrid methods is given in Fig. 8, for both
the C-type and O-type grids. Note that a 4 level MG hierarchy was also evaluated using the O-type grid. The simulations were
conducted with a mean-flow CFL as high as CFL = 400. While the CFL of the turbulence model (CFLT) was as high as
CFLT = 800 in multigrid computations, and CFLT ?1 in single-grid computations. An acceleration factor of two was ob-
tained for tests performed with the C-grid. Moreover, while the SG solver failed to reach convergence using the O-type grid
(even with lower CFL and CFLT numbers), the 3 level MG solver converged using the same grid in only 343 work units, cor-
responding to 53 MG cycles. The 4 level MG solver converged in 312 work units, corresponding to 44 MG cycles. Hence, in
this case, further acceleration of 10% is achieved through use of a 4 level MG hierarchy, compared to use of a 3 level MG
hierarchy. The similarity of MG performance for both topologies (C-type and O-type grids) indicates the robustness and con-
sistency of the proposed method. Noteworthy is the fact that the convergence characteristics of the mean-flow equations and
of the turbulence model equations are similar. Consequently, it is recognized that stability and convergence of the mean-
flow equations and of the turbulence model equations are in some sense coupled. This can be realized from the fact that,
although these two sets of equations are solved in a loosely-coupled time marching manner, their multigrid cycling is
ept for positive enforcement of coarse grid corrections, as described in Section 4.1.
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Fig. 7. Comparison between calculated and measured stream-wise velocity profiles at four stations along the upper NACA4412 airfoil surface: 
,
experiment [37], – computation.

Table 2
NACA4412 computational grid information.

Grid name Grid dimension Far-field Dy1 y+

C-type grid 243 � 67 14 Chords 5 � 10�6
61

O-type grid 283 � 95 25 Chords 3 � 10�6
60.62
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strongly coupled. Furthermore, it is well-known that due to the high numerical stiffness of turbulence model equations, tur-
bulent simulations converge slowly as they require the use of smaller time steps along with the need to closely follow the
evolution of the simulation. In contrast, the use of the UPC scheme completely overturns the trend. The ability to utilize a
very large time step for the turbulence model solver guarantees fast convergence of the turbulence equations, with respect
to the current mean-flow state. This is achieved while guaranteeing positivity of turbulence quantities. Thus, apart from sta-
bilizing time-integration of turbulence model equations, use of the UPC scheme also brings about an accelerated conver-
gence of the mean-flow equations as well.

A closer examination of turbulent solutions on all levels of the MG hierarchy is performed to shed further light on the
issue of minimal coarse grid level resolution. Throughout the convergence process, the MG coarse grid correction,
DQh ¼ Ih

HðQH � IH
h Q

hÞ, gradually decreases, indicating that coarse level solutions ðQHÞ resemble the fine level solution
ðQhÞ. The behavior of turbulent solutions obtained on all grid levels of the MG hierarchy is qualitatively examined through
comparison of turbulence viscosity (lt) values, shown in Fig. 9. The comparison was based on solutions obtained after
40 MG cycles (nearing convergence) for the NACA4412 airfoil, using the C-type grid. High turbulence viscosity values ap-
pear roughly in the same position in the wake on all MG levels, but while maximum values of lt on the finest and inter-
mediate levels differ by only 2%, the maximum value on the coarsest level differs by as much as 13% with regards to the
finest level maximum. The variation in turbulence viscosity values on different MG levels is mainly related to the increas-
ing loss of resolution on coarse grid levels. Therefore, it is believed that the variance of turbulence viscosity values on
coarse grid levels occurs due to gradual loss of accuracy in the approximation of non-linear turbulence model source
terms. It is clear that in MG simulations based on more than 3 levels, even larger variations in turbulence viscosity values
will occur.
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5.3. RAE2822 airfoil

The simulation of the transonic flow about the RAE2822 supercritical airfoil is another well-known test case. The exper-
iment performed by Cook et al. [34] covers a wide variety of flow conditions. Two of these flow conditions were simulated
using the proposed method, with the kx-Linear and kx-EARSM turbulence models:

� Mach number, M1 = 0.68; Reynolds number, Re1 = 6.5 � 106; and an incidence angle of a = 1.93� (referred to as case 1 in
Ref. [34]).
� Mach number, M1 = 0.734; Reynolds number, Re1 = 6.5 � 106; and an incidence angle of a = 2.54� (referred to as case 9 in

Ref. [34]).

Two C-type grids were employed in the current test: a fine grid, and a coarser grid. Common grid parameters are given in
Table 3.

A comparison of the calculated surface pressure coefficient with the experimental data [34] is displayed in Fig. 10(a) for
case 1 flow, and in Fig. 10(b) for case 9 flow. The overall agreement between computational and experimental data is very
good for both the kx-Linear and kx-EARSM turbulence models. Specifically, the shock wave location (case 9) is accurately
captured.

Comparisons of convergence histories recorded using the single-grid and multigrid methods (both using the UPC
scheme), with the kx-Linear turbulence model, are presented in Figs. 11 and 12 for case 1 and case 9 flows, respectively.
The simulations were conducted with a maximum mean-flow CFL = 200. While the CFL of the turbulence model (CFLT)



Table 3
RAE2822 computational grid information.

Grid name Grid dimension Far-field Dy1 y+

Coarse grid (C) 275 � 67 31 Chords 5 � 10�6
61.9

Fine grid (C) 435 � 123 23 Chords 1 � 10�6
60.43
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was as high as CFLT = 400 in multigrid computations, and CFLT ?1 in single-grid computations. Note that a 4 level MG hier-
archy was also evaluated using the fine grid, for case 9 flow. For case 1 flow, acceleration factors of more than two, and more
than three, are obtained using the coarse and fine grids, respectively. Strong evidence as to the robustness of the proposed
MG algorithm can also be seen by noting that 3 level MG converges for case 9 flow on the two examined grids in 245 and 357
work units (corresponding to 38 and 51 cycles) for the coarse and fine grid, respectively. On the other hand, single-grid sim-
ulations yielded slower convergence using the fine grid than that achieved with the coarse grid, as expected. The 4 level MG
solver converged in 291 work units for case 9 flow on the fine grid, corresponding to 41 MG cycles. Hence, in this case,
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further acceleration of 18% is achieved through use of a 4 level MG hierarchy, compared to use of a 3 level MG hierarchy.
Similar performance is exhibited by the MG algorithm for case 1 flow as well. In addition, it can be seen that SG computa-
tions on the fine-grid suffer from noticeable convergence oscillations, while MG convergence remains smooth.

Comparisons of convergence histories obtained using the SG and MG methods, with the kx-EARSM turbulence model, on
the coarse RAE2822 grid are presented in Fig. 13(a) and (b) for case 1 and case 9 flows, respectively. While a maximum
CFL = 200 and CFLT = 400 were allowed in multigrid computations, only CFL = 50 and CFLT = 100 were allowed in single-grid
computations. Acceleration factors of nearly two are achieved using the MG method, with respect to an equivalent SG sim-
ulation, for case 1 and case 9 flow conditions.

The robustness of the proposed FC-MG-UPC method is once again shown in the fact that its suitable for both the non-lin-
ear (EARSM) turbulence model, as well as for the linear turbulence model, without requiring unique numerical treatment or
stabilization fixes for any of the models. In addition, it should be noted that use of the proposed method also provides similar
acceleration factors for both turbulence models examined in this work, with respect to an equivalent SG method.
5.3.1. Positivity of turbulence quantities
To demonstrate the positivity of turbulence quantities throughout the simulation, a plot of their minimum value histories

in all three grid levels of the MG hierarchy is presented in Fig. 15 for flow simulation about the RAE2822 airfoil at case 9
flow conditions, using the kx-Linear turbulence model and the coarse grid. It can be seen that no negative values appear
0 500 1000 1500
−10 

−9 

−8 

−7 

−6 

−5 

−4 

−3 

−2 

−1 

0 

Work Units (WU)

Lo
g 

( |
| R

 ||
2 , 

|| 
r |

| 2 )

x 2.1
acceleration

Mean−flow
kω−EARSM

SG

MG

0 500 1000 1500
−10 

−9 

−8 

−7 

−6 

−5 

−4 

−3 

−2 

−1 

0 

Work Units (WU)

Lo
g 

( |
| R

 ||
2 , 

|| 
r |

| 2 )

x 1.9
acceleration

Mean−flow
kω−EARSM

SG

MG

Fig. 13. Comparison of convergence histories obtained using the kx-EARSM turbulence model for the RAE2822 airfoil at different flow conditions,
MG(CFL = 200, CFLT = 400) vs. SG(CFL = 50, CFLT = 100).



0 100 200 300 400
−10 

−9 

−8 

−7 

−6 

−5 

−4 

−3 

−2 

−1 

0 

Work Units (WU)

Lo
g 

( |
| R

 ||
2 , 

|| 
r |

| 2 )

 

 

x 1.4
acceleration

Mean−flow
k ω−Linear

MF−MG(3)

FC−MG

0 100 200 300
−10 

−9 

−8 

−7 

−6 

−5 

−4 

−3 

−2 

−1 

0 

Work Units (WU)

L
o

g
 (

 ||
 R

 ||
2 , 

|| 
r 

|| 
2 )

x 1.1
acceleration

Mean−flow

kω−Linear

FC−MG

MF−MG(3)

Fig. 14. Comparison of convergence histories for the RAE2822 airfoil at M1 = 0.734, Re1 = 6.5 � 106, and a = 2.54� (referred to as case 9 in Ref. [34]), FC-MG
(CFL = 200, CFLT = 400) vs. MF-MG(CFL = 200,170 CFLT = 400,340).

0 5 10 15 20 25 30 35
−25 

−20 

−15 

−10 

−5 

0 

Multigrid Cycles

Lo
g 

( ρ
k m

in
, ρ

ω
m

in
 )

ρk

ρω

Fig. 15. Turbulence quantities minima throughout a multigrid simulation of case 9 flow about the RAE2822 airfoil, using the kx-Linear turbulence model
and a coarse grid: }, finest grid level; h, intermediate grid level; 
, coarsest grid level.

5838 M. Wasserman et al. / Journal of Computational Physics 229 (2010) 5820–5842
throughout the entire simulation, and that towards convergence, minima of turbulence quantities also converge to practi-
cally the same value at all grid levels.

5.3.2. Mean-flow multigrid (MF-MG)
As mentioned in the Introduction, the mean-flow multigrid (MF-MG) approach is commonly used to bypass numerical

difficulties arising from the destabilizing effects of productive turbulence model source terms. However, insufficient accel-
eration of the turbulence transport equations due to a partial use of single-grid computations in MF-MG may result in an
overall reduced convergence rate, compared to fully-coupled multigrid. To evaluate the performance of the proposed FC-
MG-UPC method, with regards to the MF-MG approach, a comparison of convergence histories was performed. To bridge
the gap in the time evolution of the turbulent solution, as compared to the mean-flow solution obtained in MF-MG, 3 relax-
ations of turbulence model equations were performed for every mean-flow relaxation on the fine-grid level. This was found
to be crucial for ensuring the stability of MF-MG. Comparisons of convergence histories obtained using the proposed fully-
coupled multigrid method (FC-MG-UPC) and MF-MG for simulating case 9 flow on the coarse and fine RAE2822 grids, using
the kx-Linear turbulence model, are shown in Fig. 14(a) and (b), respectively. It should be emphasized that while the FC-MG-
UPC allowed use of CFL = 200 for the fine RAE2822 grid, the MF-MG approach converged only using a lower CFL = 170. The
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comparison suggests that the FC-MG-UPC method is favorable to the MF-MG approach in terms of robustness and efficiency.
This is believed to be related to insufficient acceleration of the turbulence transport equations due to partial use of single-
grid computations in MF-MG.
5.4. Plane asymmetric diffuser

Computations of the steady turbulent flow through a plane asymmetric diffuser, schematically shown in Fig. 16, have
been conducted. The long inlet channel (110 times of the channel height), followed by a diffuser with an opening angle of
10� of the bottom wall with an expansion ratio of 4.7. The outlet boundary is placed at the position of x = 105H. The plane
y

H x

21 H

4.7 H
10

Fig. 16. Schematic description of the plane asymmetric diffuser geometry.

Fig. 17. Streamlines and stream-wise velocity map of the plane asymmetric diffuser.
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asymmetric diffuser geometry was selected according to the experimental study performed by Buice and Eaton [38]. In this
work, the inlet Mach number was set to M1 = 0.2 and the reference Reynolds number that is based on the channel height and
the inlet velocity is Re1 = 2 � 104. The computational grid has the dimension of 419 � 113 where the first grid point neigh-
boring the walls is placed at a distance of 3 � 10�4 of the channel height, corresponding to y+

6 0.35.
The experimental flow conditions and diffuser geometry are characterized by a smooth adverse pressure gradient driven

separation on the bottom inclined wall (see Fig. 17). In the diffuser used in the experiment, the diffuser upstream and down-
stream bottom inclined wall corners were rounded to prevent separation at this corners. Internal turbulent flow simulation
of geometries where separation is not ruled by sharp corners is very challenging, particularly the separation point location
and the extent of the recirculation region. Past numerical studies [39,40] suggest that advanced turbulence models may have
an advantage in flow prediction in such cases. Therefore the kx-EARSM model is used for this test case.

A comparison of the calculated stream-wise velocity profile and experimental data at four stations along the separation
region is shown in Fig. 18. The computed results are in reasonable agreement with the experimental data.

A comparison of convergence histories recorded using the single-grid and the proposed FC-MG-UPC methods is shown in
Fig. 19. The simulations were conducted with a uniform CFL number for the mean-flow and turbulence model equations:
CFL = CFLT = 300. An acceleration factor of three was obtained using the proposed MG method, as compared to an equivalent
SG solution. Furthermore, while SG convergence exhibits an oscillatory pattern at early stages of the simulation, the conver-
gence pattern using the MG method is smoother by far.
6. Summary

A robust multigrid method for the solution of RANS equations with two-equation turbulence models is presented. The
method employs a basic relaxation scheme (alternating line Gauss–Siedel) where mean-flow and turbulence model equa-
tions are marched in time in a loosely-coupled manner. Two pillars stand at the base of the proposed MG method: use of
an extended version of the unconditionally positive-convergent scheme for two-equation turbulence models, adapted for
use in multigrid, and the use of a strongly coupled multigrid cycling strategy. It is shown that, by using the UPC scheme
in single-grid computations alone, convergence rates of the overall flow solver are increased nearly five times compared
to a solver based on a standard implicit scheme for turbulence model equations. In addition, convergence characteristics
of the UPC scheme have been further improved thanks to modification of the diffusive implicit operator.

Moreover, favoring the use of a combined multigrid cycling strategy over a separated strategy nearly quadrupled the
overall efficiency, as measured by computational WU required for convergence. It was also found that the fully coupled
(FC-MG) approach is favorable to the MF-MG approach in terms of robustness and efficiency. Minimal stabilization in the
form of damping of turbulence equations coarse grid corrections was found to be necessary in order to ensure the positivity
of turbulence quantities. Specifically, coarsest grid corrections of the turbulence kinetic energy equation were not applied
inside laminar-turbulent transitional regions only, and positivity-preserving relaxation of turbulent coarse grid correction
was applied, mainly in small near-wall regions. The resulting MG method, termed FC-MG-UPC, is suitable for robust simu-
lations of a wide range of flows thanks to being nearly free of artificial stabilization techniques, and user-supplied
parameters.
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Numerical experiments showed that the proposed FC-MG-UPC method increases the efficiency compared to an equiva-
lent single-grid method based on the UPC scheme by a factor of up to three. Moreover, the method has proven to be more
stable than an equivalent SG-based method, allowing the use of higher CFL numbers for the mean-flow equations and even
rapid convergence in a case where the SG-based method failed to converge. Thanks to the added stability gained by the use
of the UPC scheme, a uniform CFL number and second order spatial accuracy could be used on all grid levels of the MG hier-
archy. Moreover, the robustness of the proposed FC-MG-UPC method is well reflected by its impressive performance with
the non-linear, EARSM, turbulence model, which is considered to be more numerically stiff than linear models.
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